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Abstract

Real-time monitoring using in-situ sensors is becoming a common approach for measuring

water-quality within watersheds. High-frequency measurements produce big datasets that

present opportunities to conduct new analyses for improved understanding of water-quality

dynamics and more effective management of rivers and streams. Of primary importance is

enhancing knowledge of the relationships between nitrate, one of the most reactive forms of

inorganic nitrogen in the aquatic environment, and other water-quality variables. We ana-

lysed high-frequency water-quality data from in-situ sensors deployed in three sites from dif-

ferent watersheds and climate zones within the National Ecological Observatory Network,

USA. We used generalised additive mixed models to explain the nonlinear relationships at

each site between nitrate concentration and conductivity, turbidity, dissolved oxygen, water

temperature, and elevation. Temporal auto-correlation was modelled with an auto-regres-

sive–moving-average (ARIMA) model and we examined the relative importance of the

explanatory variables. Total deviance explained by the models was high for all sites (99%).

Although variable importance and the smooth regression parameters differed among sites,

the models explaining the most variation in nitrate contained the same explanatory variables.

This study demonstrates that building a model for nitrate using the same set of explanatory

water-quality variables is achievable, even for sites with vastly different environmental and

climatic characteristics. Applying such models will assist managers to select cost-effective

water-quality variables to monitor when the goals are to gain a spatial and temporal in-depth

understanding of nitrate dynamics and adapt management plans accordingly.
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Introduction

Nitrate is one of the most reactive forms of inorganic nitrogen in the aquatic environment [1]

and an essential component of the nitrogen cycle supporting life on Earth. In rivers, sources of

nitrate include atmospheric deposition, groundwater, surface runoff and the biological degra-

dation of organic matter present in freshwater ecosystems. In addition, anthropogenic sources

associated with agricultural, industrial and urban land use are becoming increasingly prevalent

[2]. This includes the combustion of fossil fuels, which contributes substantially to atmo-

spheric deposition [3]. In its bio-available form, nitrate is assimilated for growth and metabo-

lism by riverine biota (e.g. algae, macrophytes and some bacteria) that form the basal

components of aquatic food webs [1]. However, an excess of nitrate can lead to problems asso-

ciated with eutrophication, such as decrease in light infiltration and dissolved oxygen concen-

tration [4, 5]. This can negatively impact the health of aquatic biota such as invertebrates and

fish [6–8]. Understanding the dynamics of nitrate concentration in rivers, and the relation-

ships nitrate has with other water-quality variables, is therefore of primary importance for the

effective management of freshwater ecosystems.

Monitoring is central to understanding the links between water-quality variables and the

health of freshwater ecosystems [9]. Advances in the development of in-situ environmental

sensors have led to their world-wide and long-term use in environmental monitoring [10–12].

Yet, water-quality monitoring in rivers still relies primarily on the time-consuming and expen-

sive manual collection of samples, with the resultant data being sparse in space and time [13].

Fortunately, relatively low-cost in-situ sensors and sampling methods are being developed that

allow some properties such as water temperature, turbidity, oxygen concentration, salinity and

conductivity to be semi-continuously sampled and then analysed statistically [14, 15]. These

high-frequency data-sets provide unique opportunities to better understand water-quality

dynamics.

The large data-sets generated by in-situ sensors also present new challenges when analysing,

modelling and reporting water-quality data [14–16]; for example in terms of quality assurance

and control [13]. The prohibitive cost of certain sensors [17], such as optical sensors used to

estimate high-frequency nitrate (NO�
3

) concentration, mean that they can only be deployed at

a small number of sites and/or for limited periods of time. An additional challenge is to

develop transferable models of water-quality dynamics and the links among water-quality vari-

ables for disparate river systems, especially for properties of interest like nitrate [18], especially

when sensors are sparsely deployed. Ubiquity in water-quality relationships across climate

zones and watersheds have thus far remained difficult to detect and model due to the many dif-

ferent processes that can be responsible for the resultant dynamics [19].

While several other studies have explored models for nitrate concentration in rivers, they

have been developed for different purposes, many for prediction rather than to understand

underlying relationships among water-quality variables, and with varying degrees of success.

For example, [20] used Artificial Neural Networks to predict monthly values of nitrate from

multiple measures, including concentrations of other nutrients measured using traditional

sampling and laboratory analyses. More recently, [18] predicted nitrate from non-nutrient-

based water-quality data collected from high-frequency, in-situ sensors using generalised-lin-

ear mixed-effects models (GLMMs) with a continuous first-order auto-regressive correlation

(AR(1)) structure to account for temporal auto-correlation. However, GLMMs detect linear

relationships and, as pointed out by [21], the relationships between nitrate and other water-

quality variables tend to be nonlinear. [21] also investigated relationships between nitrate and

other water-quality variables using high-frequency sensor data with the aim of prediction

using Random Forests Regression (RFR) models, which can handle nonlinear interactions
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among variables. However, predictions could not be extrapolated beyond the ranges of the

input data and the resultant structure of the models was relatively opaque [21]. Links between

discharge (also known as flow) and nitrate have also been investigated. However this relation-

ship is complex, not least due to nutrient spiralling in streams [22], with some studies showing

poor ability to model and explain variation in nitrate [23, 24] while others finding much stron-

ger relationships [25].

Our goal is to explore opportunities and address some challenges associated with high-fre-

quency in-situ monitoring data. More specifically, we identified key variables and developed

an additive model structure, which we used to understand the complex relationships between

nitrate concentration and other water-quality variables (rather than as an exercise in predic-

tion) collected in disparate climatic regions and subject to different levels of anthropogenic

impacts.

Materials and methods

NEON database and water-quality sensors

The National Ecological Observatory Network (NEON) database provides open data from

sites across the United States of America (USA). All NEON sites are equipped with high-fre-

quency sensors and follow standardised configuration, calibration and preventive mainte-

nance procedures [26, 27], with in-situ measurements and sample analyses following protocols

[28]. Nitrate is measured in μM using a 10 mm path length SUNA V2 UV light spectrum sen-

sor. The SUNA V2 collects data reported as a mean value from 20 measurements made during

a sampling burst every 15 minutes (Table 1). Other sensors collect specific conductance (μS/

cm), dissolved oxygen (mg/L), temperature (˚C) and turbidity (Formazin Nephelometric

Units, FNU) data as one-minute instantaneous measurements. Surface water elevation (i.e.

meters above sea level) data are also recorded as five-minute instantaneous measurements

(Table 1).

Study sites and time-series data

We extracted time-series of nitrate [29] and other surface water-quality variables [30–32] from

three different sites within the NEON database on 29 January 2021 (see Table 1): the Arikaree

River in Colorado, Caribou-Poker Creeks Research Watershed in Alaska, and Lewis Run in

Virginia, which we will refer to as Arikaree, Caribou and Lewis Run, respectively throughout

(Table 2). As nitrate measurements were collected less frequently than other water-quality var-

iables (see Table 1), all sensors took measurements each time nitrate was sampled. Water-

Table 1. Details on NEON sensors, variables collected, units of measurement, associated data-collection intervals, and the NEON data product number for data

used in this study.

Sensor Water-quality

variable

Unit Raw sensor collection interval Published

interval

NEON data product

number

SUNA v2 nitrate μmol/L NO3-N average of 20 bursts every 15

minutes

15 minute DP1.20033.001

Level TROLL 500 water level meters above sea

level

1 minute 5 minute DP1.20016.001

YSI EXO Optical Dissolved Oxygen dissolved oxygen mg/L DO 1 minute 1 minute DP1.20288.001

YSI EXO Turbidity turbidity FNU 1 minute 1 minute DP1.20288.001

YSI EXO Conductivity and

Temperature

specific conductance μ S/cm 1 minute 1 minute DP1.20288.001

Platinum Resistance Thermometer temperature ˚C 1 minute 1 minute DP1.20053.001

https://doi.org/10.1371/journal.pone.0287640.t001
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quality measurements from other time points were therefore discarded so that we only used

data measured every 15 minutes (i.e. at each nitrate-measurement time point) in the analyses.

Prior to analyses, we also removed data labelled as anomalous (e.g. due to known sensor cali-

bration problems) during the rigorous NEON quality assurance and quality control procedure

[16]. This, along with periods of missing data resulting from flow intermittence or sensors

being temporarily out of service, meant that the time series of data from each site differed. For

example, the river at Caribou freezes from approximately October to May each year and

NEON removes most sensors from the site to prevent damage or loss. Despite these gaps in

the data, at least 50% of the time series we examined from any one site overlapped with that of

the other sites. Table 2 provides details about the selected data time series for each site, along

with the actual time-period that could be used for modelling due to missing data. The time

series of data are also available in the S1 File.

Statistical analyses

NEON publishes many environmental data products. The “water-quality” data product [30]

includes high-frequency pH, dissolved oxygen, oxygen saturation, turbidity, specific conduc-

tance, conductivity, chlorophyll-a, and fluorescent dissolved organic matter (fDOM) data

streams. The “temperature (PRT) in surface water” product [31] contains high-accuracy tem-

perature data and the “surface water elevation” product [32] includes elevation data derived

from pressure transducers and site-surveyed elevations. Among the water-quality variables,

many exhibit strong correlation with each other. We investigated multicollinearity in order to

select only those variables that were independent or weakly correlated with each other. Multi-

collinearity between covariates can influence parameter estimates and inflate variances, lead-

ing to improper inference from fitted models [33], especially when the sample size is small.

Although the data sets in this study were large (n = 70080 at Caribou, Arikaree and Lewis

Run), we checked for multicollinearity using the variance inflation factor (VIF) [34] to identify

and remove any covariates that were strongly multi-collinear (VIF< 6). Based on this rule, we

decided to not use conductivity, fluorescent dissolved organic matter (fDOM) pH and oxygen

saturation. Also, the chlorophyll-a data were not taken into account in this study due to there

Table 2. Details of NEON sites used in this study.

Arikaree Caribou Lewis Run

Watershed (km2) 2,875 106 11.9

Latitude/Longitude (WGS

84)

39.758206, -102.44715 65.153224, -147.50397 39.095637, -77.983216

Manager The Nature Conservancy Bonanza Creek Long-Term Ecological Research Program and

University of Alaska Fairbanks

Casey Trees (nonprofit

organisation)

Climate zone Semi-arid Subarctic Temperate

Land use / land cover Grasslands, agriculture Subarctic taiga, discontinuous permafrost Fields, pastures, woodlands and

small ponds

Flow persistence Intermittent (dry in

summer)

Perennial by ice covered in winter Perennial

Mean annual precipitation

(mm)

450 262 976

Urbanisation present in

watershed?

No No Yes

Period of data analysed January 2018 to December

2019

January 2018 to December 2019 January 2018 to December 2019

Period of data modelled September 2018 to

December 2019

June 2018 to October 2019 January 2018 to December 2019

https://doi.org/10.1371/journal.pone.0287640.t002
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being an excessive number of anomalies. Therefore, we considered the following variables for

further study: elevation of surface water, temperature, specific conductance, dissolved oxygen

and turbidity.

For the purposes of statistical analyses, we considered nitrate as the response (i.e. dependent

variable) and the other water-quality variables (see Table 1) as covariates (i.e. explanatory vari-

ables or predictors). We included a continuous covariate of time to account for the natural

temporal variability that can occur in water quality variables, like nitrate concentration, in riv-

ers. Visual examination of the distributions of the response and covariates indicated that tur-

bidity had a strongly right-skewed distribution and was therefore log-transformed (i.e. log

(turbidity + 1)) prior to analysis.

Generalised additive mixed models (GAMMs) [35] were built to link nitrate concentration

with covariates from each site individually as described by the equation:

Yi ¼ b0 þ
Xm

k¼1

skðzkiÞ þ Zi ð1Þ

where zki are covariates measured at the ith sample (i = 1, . . ., n). Here, β0 is an intercept and ηi
is the auto-regressive integrated moving-average (ARIMA) (ρ,ϕ) error, Zi ¼ εi þ

Pp
j¼1
rjZi� j þ

Pq
l¼1
�lεi� l with ρj the autocorrelation parameters and φl the moving average parameters, and

εi�
i:i:d N ð0; s2Þ is Gaussian white noise. The associated smooth function sk(�) of each water-

quality variable zk was defined using thin plate spline regression [36].

This model defined in (1) is estimated using a two-step modelling framework:

1. Step one: A generalised additive model (GAM) is used to model potential non-linear links

between nitrate concentration and covariates. A stepwise variable-selection procedure was

implemented and the ‘best’ GAM (variables and penalisation of smooth splines) for each

site was identified based on the Akaike Information Criterion (AIC) [37]. To avoid over-fit-

ting of the GAM model, the maximal value of degrees of freedom of the smooth terms was

fixed at 6. This value was chosen to be large enough to allow for shapes that could be

explained by periodic ecological processes potentially occurring at intra-annual to annual

time scales. There is an identifiability issue between time trends due to seasonal patterns,

and autocorrelation due to time-changing covariates. The value we chose ensured the time

trends were flexible enough to handle longer-term trends, while not so large as to overfit

temporal variability and capture shorter-term fluctuations.

2. Step two: An autoregressive–moving-average model was fitted to the GAM residuals to take

into account the structural dependence of the time series data (GAMM). The best ARIMA

regression on the GAM residuals were identified, based on the Akaike Information Crite-

rion, to account for temporal autocorrelation in the time series data.

We then assessed the statistical significance and importance of each covariate in the best

models to better understand their effects on nitrate. Variable importance can be estimated eas-

ily with linear models using the partial R2 (i.e. the proportion of variation explained by a covar-

iate in a model), but this approach cannot be used in a GAMM [38]. Therefore, we compared

the deviance explained by the best GAMM and the same GAMM with each water-quality

covariate iteratively removed. We choose to present deviance explained in this paper to com-

pare models and variable importance at each site because deviance explained is a percentage

(restricting it between 0 and 100) making it easy to interpret. Finally, to compare performance

of GAM versus GAMM in each site, we assessed the approximate Akaike Information
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Criterion (aAIC) given by the formula:

aAIC ¼ n logðŝ2Þ þ 2k ð2Þ

[39] where n is the length of the time series, ŝ2 is the variance of the model residuals and k is

the total number of degrees of freedom in the model. We chose this approach because it is

computationally efficient compared to other cross-validation methods (e.g. with multiple

training/test set splits) and has reliable convergence properties asymptotically equivalent to

one-step time series cross-validation. The smaller the aAIC, the better the model performance.

All analyses were undertaken in R statistical software using the car [40], gam [41], mgcv
[36], and forecast [42] packages. The R script used to implement the analyses is provided

in the GitHub repository: https://github.com/Claire-K/nitrate_links.

Results

Water-quality characteristics within and among sites

Each site had distinct water-quality characteristics (Figs 1 and 2). Lewis Run had a higher

nitrate concentration than Caribou and Arikaree sites (median = 5.5, 28.4 and 192 μM at Ari-

karee, Caribou and Lewis Run, respectively). For specific conductance, the Caribou site dif-

fered from the two other sites having, lower values (median = 531.6, 77.15 and 577.8 μS/cm at

Arikaree, Caribou and Lewis Run, respectively). Dissolved oxygen concentration also differed

among the three sites (median = 7.3, 12.34 and 9.55 mg/L at Arikaree, Caribou and Lewis Run,

respectively). Water-quality variables exhibited more variability at Arikaree and Lewis Run

than at Caribou (Fig 1). Temperature ranges were narrowest at Caribou (0 to 13˚C), wider at

at Lewis Run (1 to 22˚C), and widest Arikaree (0 to 34˚C). As noted above, turbidity was

strongly right-skewed in distribution at all three sites, with the mean always greater in value

than the third quartile (mean = 95.45 FNU, Q3 = 9.98 FNU at Arikaree; mean = 3.41 FNU,

Q3 = 3.15 FNU at Caribou; mean = 23.85 FNU, Q3 = 23.93 FNU at Lewis Run). Finally, sur-

face water elevation was very different among sites, and despite the small ranges between mini-

mum and maximum elevations, exhibited some temporal variability at Caribou (230.0–230.8

m), Arikaree (1179–1180 m) and Lewis Run (125.9–126.7) during the study period.

Diel fluctuations in water-quality occurred at all three sites despite differences in the distri-

butions of water-quality data among them (top plots of Fig 2). At Caribou, nitrate, dissolved

oxygen, specific conductance and turbidity increased while temperature decreased during the

afternoon and the night. At Arikaree, the diel patterns exhibited comparatively more variation

than at Caribou, and both nitrate and dissolved oxygen fluctuated in the opposite direction

(i.e. decreasing at night and increasing during the day). Lewis Run exhibited similar diel pat-

terns in turbidity as Caribou and Arikaree in terms of there being a clear alternation between

day and night.

When a flow event (lower plots in Fig 2) occurred at Arikaree site (i.e. when the elevation

level suddenly rose), nitrate concentration, oxygen concentration and turbidity increased,

while specific conductance and temperature decreased. Conversely, at Lewis Run, a sudden

increase in water level coincided with a decrease in nitrate concentration. At Caribou, the rise

in water level was accompanied by an increase in turbidity, but the relationships between

water level and the other water-quality covariates were more complex.

GAMs

GAM regressions were used to understand the links between nitrate concentration and each

covariate (Fig 3). The smooth regressions between nitrate and the covariates revealed
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differences among sites and covariates. For example, the time smooth regression (i.e. the

expected change in nitrate concentration) peaked around April-May and September-October

at Arikaree, and in the cooler months at Lewis Run, whereas the pattern of peaks was less dis-

tinct at Caribou. The smooth regression of temperature (Fig 3) demonstrated a slight negative

effect on the expected change in nitrate concentration at Arikaree. The reverse appeared to

occur at Caribou and Lewis Run, with the expected change in nitrate concentration increasing

with temperature.

For dissolved oxygen, the smooth regression indicated a minimal effect on expected change

in nitrate concentration at Arikaree (Fig 3). This was also the case for Caribou up until a dis-

solved oxygen concentration of around 13.5 mg/L when the expected change in nitrate con-

centration increased sharply; however, this increase was due to a small number of high-

concentration dissolved oxygen measurements only. The relationship between expected

Fig 1. Box-plots of water-quality data for Arikaree, Caribou and Lewis Run. Bold lines within boxes represent

medians and lower and upper edges of boxes represent the interquartile range (IQR), with whiskers extending to 1.5

times the IQR. Closed circles represent data with values beyond the whiskers. Note, the y-axis for turbidity uses a base-

10 log scale.

https://doi.org/10.1371/journal.pone.0287640.g001
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change in nitrate concentration and dissolved oxygen appeared to trough at Lewis Run around

9.5 mg/L.

The specific conductance smooth regression had a very different effect on the expected

change in nitrate concentration at all three sites. At Caribou, there was a strong, negative effect

on expected change in nitrate concentration up to around 45 μS/cm followed by a strong, posi-

tive effect to 65 μS/cm. Ranges of specific conductance at Arikaree and Lewis Run were similar,

but smooth regressions were different for small values. At Arikaree, the expected change on

nitrate concentration increased until 500μS/cm whereas it decreased at Lewis Run. In the two

sites, when the specific conductance was higher than 550 μS/cm, nitrate concentration

increased.

Confidence intervals for the smoothed regressions of log-transformed turbidity on the

expected change in nitrate concentration tended to be wide in all three models compared with

those of other covariates (Fig 3). The effect of turbidity, although weak, tended overall to be

negative at Caribou and Arikaree, whereas at Lewis Run the effect tended to be more variable.

Fig 2. The top three plots are examples of diel fluctuations and other trends in water-quality at the study sides, visualised over 5-day windows of

representative data, each starting and ending at 10 pm GMT. Local time in the three top plots starts at 3 pm at Arikaree, 2 pm at Caribou, and 5 pm

at Lewis Run. The three bottom plots are examples of flow events, which are indicated by sudden rises in surface water elevation. Cond., conductance;

Elev., elevation; Temp., temperature. Note that the scales for the y-axes differ among sites and variables.

https://doi.org/10.1371/journal.pone.0287640.g002
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The relationship between the smooth regression for surface water elevation and expected

change in nitrate concentration was also different among sites. At Caribou, the expected

change in nitrate concentration tended to increase with increasing surface water elevation,

while Lewis Run exhibited an opposite relationship at least until near the end of the smooth

regression. At Arikaree, confidence intervals were wide at the start of the smooth regression

and cannot be interpreted, but at higher water stages, nitrate concentration tended to increase

with surface water elevation, similar to Caribou.

GAMMs

The two-step modeling framework used in this study allowed us to differentiate the amount of

deviance explained by covariates (GAM step) and the amount of deviance explained by the

auto-regressive model (ARIMA step). In the first step, we included all variables as potential

covariates in the GAMs because the VIF results indicated that multicollinearity among the

Fig 3. Smooth regressions (solid lines) of the expected change in nitrate concentration (y-axes) when values taken by covariates (x-axis) increased,

by site. More specifically, each plot represents the regressive spline sk(zki) (Eq (1)) of one covariate at one site, i.e. the expected change in nitrate

concentration Yi for a one unit increase in the covariate zki. Dashed lines show the standard error estimates. Missing values (gaps in the time series data)

are not shown.

https://doi.org/10.1371/journal.pone.0287640.g003
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covariates (the water-quality and time variables) was not a significant concern (VIFs < 6). The

best GAMs, as selected by the stepwise variable-selection procedure based on the AIC,

achieved a deviance explained of 75%, 83% and 85% respectively for Arikaree, Caribou, and

Lewis Run The auto-regressive ARIMA functions then fit to the residuals of the best GAMs

were ARIMA(4,0,0), ARIMA(5,0,3) and ARIMA(3,1,4), respectively, for Arikaree, Caribou

and Lewis Run, which increased the total deviance explained by the models (see S2 File for fit-

ted vs observed values). Hence, final GAMMs achieved a deviance explained of 99% for all

three sites.

Model performance for each sites were evaluated using the aAIC (Eq 2). GAMMs per-

formed far better than GAMs across all three sites (Table 3). However, the GAMs all explained

a large proportion of variation in nitrate with the same combination of covariates, regardless

of site. These included smooth terms for specific conductance, dissolved oxygen, temperature,

turbidity (log-transformed), time and surface water elevation, which were all statistically sig-

nificant (p< 0.001). However, the importance of covariates in the models fit to nitrate data

differed among sites. Overall, the relatively low importance of all covariates at Arikaree com-

pared to that at Caribou and Lewis Run (Fig 4) was congruent with the amount of deviance

explained by the GAM portion of the Arikaree model (75%). The most important variable in

the GAM for Arikaree was water temperature, but it explained less than 5% of the deviance in

the final GAMM. However, the auto-regressive portion of the GAMM for Arikaree was partic-

ularly important, explaining 25% of the deviance. At Lewis Run, all the water-quality variables

were important in explaining nitrate. The variable with the greatest importance was specific

conductance (> 15%). The importance of all other water-quality covariates were between

about 11% and 14% of the nitrate concentration deviance. These higher values of variable

importance at Lewis Run corresponded with the larger proportion of deviance explained

(85%) by the GAM part of the GAMM for this site. At Caribou, the auto-regressive part of the

GAMM was less important in explaining nitrate concentration deviance (only 17%) than that

explained by the GAM portion of the model (83%). Specific conductance was the most impor-

tant variable (10%) and turbidity the least important in the Caribou model.

Discussion

Our study has demonstrated that GAMMs provide a suitable and useful method to model and

understand the nonlinear relationships between nitrate and other water-quality variables, with

an ability to explain 99% of the variation in nitrate concentration. Random Forests Regression

(RFR) models, which can handle nonlinear interactions among variables and have an advan-

tage over GAMM in their ability to provide information on variable importance, have been

shown to explain 89% of nitrate concentration [21]. However, we note that [21] built their

RFR models for the purpose of prediction and the resultant structure of their models was

Table 3. Model performance for all three sites, as based on the approximated Akaike Information Criterion

(aAIC).

Site Model aAIC

Arikaree GAM 6044

GAMM -44631

Caribou GAM 76871

GAMM 40814

Lewis Run GAM 10962

GAMM -13042

https://doi.org/10.1371/journal.pone.0287640.t003
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relatively opaque. Thus, we suggest GAMM regression in preference to other models like

GLMMs and RFR when the primary aim is to explore the structure of the model and the shape

of the non-linear relationship, which for the present study informs understanding of the links

between nitrate and other water-quality variables. The two-step approach we used in this study

is also highly relevant because, in addition to improving the understanding of the nitrate-

water quality links, it enables the importance of temporal auto-correlation in nitrate measure-

ments to be accounted for and assessed.

The use of GAMMs with high number of data has nevertheless raised computational chal-

lenges. The first challenge was the presence of missing data and technical anomalies in the

time series. Within the two-year period of data analysed for this study, there were extended

periods of such data that could not be incorporated into the models, which constrained the

lengths of the time series modelled as a result (see S1 File). A second challenge was building

the GAMMs themselves. The most commonly used function in the R mgcv package to fit

GAMMs is ‘gamm’, which enables an ARIMA process to be fit to GAM residuals. However, as

Fig 4. Variable importance, as the percentage of the total GAMM model deviance, for statistically significant covariates (p< 0.001), by study site.

Total deviance explained by each GAMM was 99% for all three sites.

https://doi.org/10.1371/journal.pone.0287640.g004
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explained in the gammmgcv vignette [43], ‘gamm’ is typically much slower to run than the

‘gam’ function, and the amount of memory required by R to run ‘gamm’ with large data sets

may need to be increased substantially. Using the large data sets in this study often resulted in

function failure, which required us to individually code the two-step GAMMs. This meant that

temporal auto-correlation was not accounted for in the smoothing-parameter selection step,

such that any auto-correlation could potentially be confused with trend resulting in under-

estimation of the smoothing parameters and bias during inference. However, a two-step

approach, such as that we used to secondarily account for auto-correlation, while typically not

as efficient as estimating auto-correlation and smoothing parameters at the same time, is often

more robust [44]. A final computational challenge in this study was to calculate variable

importance for the GAMs. Several solutions are available to calculate variable importance for

linear models (see, for example the vimp package [45]), but, to our knowledge, no solutions

are available to easily calculate variable importance for non-linear models. As a result, we

needed to determine variable importance using the relatively time-consuming method of itera-

tively comparing models with and without each covariate.

In terms of describing and better understanding nitrate dynamics and the relationship

between nitrate concentration and other water-quality variables, the models we developed

indicated similarities and differences among sites. Firstly, sites differed in their nitrate dynam-

ics, likely relating to the distinct environmental conditions of the regions in which each sites

was located. Rivers in regions with discontinuous permafrost, like Caribou, tend to export

nitrogen (including in dissolved form, i.e. nitrate) rather than retain it, which is more typical

of rivers in temperate regions like Arikaree and Lewis Run [46]. At Caribou, specific conduc-

tance was the most important variable explaining variation in nitrate concentration, followed

by time to a lesser extent. Specific conductance was negatively correlated with nitrate and with

surface water elevation (see S1 File). At Caribou, it is likely that rain storms are serving to

increase stream level, decrease specific conductance and flush nitrate from shallow flow-paths

through the watershed into the stream. Another hypothesis is that any link between specific

conductance and nitrate concentration could be due to induced daily cycles of evapotranspira-

tion [47], affecting water surface elevation, specific conductance, and nitrate dissolution in

water. It is also possible that algae and other photosynthetic microorganisms active during the

day were depleting nitrate. At Arikaree, no variable was especially important in explaining

nitrate fluctuations. This suggests that daily fluctuations in nitrate at Arikaree were most likely

due to the activity of algae and other photosynthetic microorganisms that use nitrate as an

essential element for photosynthesis.

On the whole, water-quality variables at Caribou tended to reflect the relative stability of

the subarctic Alaskan ecosystem. Caribou is located in a reserve upstream of urbanisation,

with no known anthropogenic pollution present in chemical or physical form, including in the

nitrate delivered into the system via atmospheric deposition (which has been monitored at the

site since 1993 as part of the United States National Atmospheric Deposition Program). In

contrast, multiple peaks and/or troughs in nitrate, turbidity and conductance occurred at

Lewis Run, which may be associated with its proximity to an urban area, relative to other sites,

and an upstream water treatment plant within a predominantly agricultural watershed. These

factors would not only increase the overall nitrate concentration at Lewis Run, but could also

cause temporal variability in water-quality [48]. In fact, the highest concentration of nitrate

among the sites was observed at Lewis Run. The relatively high temporal variability in nitrate,

turbidity and conductance at Lewis Run may also be affected by climate, being in a temperate

zone with large intra-annual ranges in thermal and pluvial amplitudes. Water-quality at Ari-

karee also fluctuated substantially, and like Lewis Run, is located in an agricultural region,

albeit within a semi-arid climate zone.
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This work provides valuable insight on the links between nitrate and other water-quality

variables in river systems, using approximately two years of data from each of three sites.

While any analysis will only capture the range of variation contained within the input data

itself, our choice of sites being distinct in their environmental and flow-regime characteristics,

and the high-frequency nature of the sensor-based water-quality data that we analysed, means

that inference can be drawn across a range of conditions. Continual analysis of data collected

over future years, may, however, reveal new patterns and trends that allow for a more in-depth

understanding of the relationships among variables. On the other hand the computational

effort needed to create models from several years of data is large, and the availability of time

series from high-frequency sensors that are absent from long or multiple sequences of data is

limited. Nevertheless, testing the predictive ability of the models developed herein is likely to

provide further insight on the links among water-quality variables while also enabling the pre-

diction, for example, of missing or anomalous data in sensor-based time series.

Despite the among-site differences in nitrate concentration and other water-quality vari-

ables, the final GAMMs for each site included the same set of water-quality covariates. This

demonstrates that these water-quality variables are consistently important for understanding

variation in nitrate in rivers, even in watersheds with different types of land use and in different

climate zones. The transferability of models, for example between different sites, remains a

challenging obstacle in environmental and ecological modelling, as does the evaluation of their

transferability [49]. However, our results suggested that a single model was not appropriate for

the sites we examined, given the site-specific differences in relationship between nitrate and the

other water-quality variables. Rather, we were able to identify a transferable modelling frame-

work and a set of common of covariates that could together be used to explain nitrate concen-

tration across disparate sites. Although GAMMs in such a framework must be tailored to data

from individual sites, future research may reveal that models fit to data from sites with more

similar land use, climate conditions and flow regimes are more transferable. With the imple-

mentation of automated sensing across several sites, watersheds and potentially regions, pro-

ducing transferable models will become increasingly sought after in order to better understand

water-quality relationships and dynamics, and to support water-resource management [13].

Conclusion

The findings of this study are highly relevant for scientists and managers responsible for in-
situ monitoring in rivers. As mentioned above, gaps in in-situ sensor data are common and

the methods demonstrated here could be applied to the problem of missing data imputation

[50] and provide a more holistic description of nitrate dynamics. This is particularly important

when financial resources are limited and decisions must be made about which sensors to buy

and which water-quality variables to measure. In addition, this work provides a basis for future

studies focused on the prediction of other critically important, water-quality variables that can-

not be measured using in-situ sensors or when the sensors themselves are cost prohibitive.

Supporting information

S1 File. Original time-series. Time series of dissolved oxygen, nitrate concentration, specific

conductance, surface water elevation, temperature, and turbidity in the three studied sites.

(PDF)

S2 File. Diagnostic plots. Diagnostic plots of observed vs fitted values for the GAM and

GAMM model constructed at each site.

(PDF)
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